Probability Rules

Dr Tom Ilvento
Department of Food and Resource Economics

Overview

- What’s next?
- Different types of Events
 - Complementary Events
 - Compound Events
 - Union of Events
 - Intersection of Events
- Basic Probability Rules
 - General Additive Rule
 - Additive Rule for Mutually Exclusive Events
 - Multiplicative Law
 - Conditional Probability and Independent Events

Blood Type Problem

- The following data and pie chart is based on the blood types and Rh types of 100 randomly selected people.
- The number of people with each type are given as well as the breakdown of Rh+ and Rh- (in parentheses).
 - Note: Since the numbers sum to 100, it is easy to go back and forth with probabilities.

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Rh +</th>
<th>Rh -</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td>39</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>Totals</td>
<td>86</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Other was to represent this

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Rh Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Rh +</td>
</tr>
<tr>
<td>B</td>
<td>Rh +</td>
</tr>
<tr>
<td>AB</td>
<td>Rh +</td>
</tr>
<tr>
<td>O</td>
<td>Rh +</td>
</tr>
</tbody>
</table>

- Rh Factor: 86% Rh +, 14% Rh -
Complementary Events

- The Complement of an event A is the event that A does not occur – that is all sample points not in Event A
- Denoted as A^C or as A'
- Probability of Complementary Events:
 - $P(A) + P(A^C) = 1.0$
 - $P(A^C) = 1 - P(A)$
- Example using Blood Types
 - $P(\text{Not O Rh–}) = .39 + .01 + .04 + .02 + .08 + .35 + .05 = .94$
 - Or use the complement
 - $P(\text{Not O Rh–}) = 1 - P(\text{O Rh–}) = 1 - .06 = .94$

Compound Events

- Events can be comprised of several events joined together, and these are called COMPOUND EVENTS
- They can be the UNION of several events
- Or the INTERSECTION of several events

Union of Two Events

- The union of two events, A and B is the Event that occurs if either A, B, or both occur on a single performance of the experiment
- We denote the Union as $A \cup B$
- $A \cup B$ consists of all the sample points that belong to A or B or both.
- But, be careful not to count sample points twice
- Example: Union of Type O and Rh+
 - There are 45 type O and 86 Rh+
 - but 39 are both O and Rh+
 - So, there are 92 people who are either O or Rh+
 - $(O \cup Rh+) = 45 + 86 - 39 = 92$
 - And we can draw this out

Venn Diagram of $(O \cup Rh+)$

- $P(O \cup Rh+) =$
- $P(O \cup Rh+) = 45 + 86 - 39 = 92$
Intersection of Two Events \(A \cap B \)

- The **Intersection** of two events, \(A \) and \(B \) is the Event that occurs if both \(A \) and \(B \) occur on a single performance of the experiment.
- We denote the Intersection as \(A \cap B \).
- \(A \cap B \) consists of all the sample points that belong to both \(A \) and \(B \).
- Blood Example of an Intersection
 - Intersection of Type O and Rh+
 - There are 45 type O and 86 Rh+.
 - but 39 are both O and Rh+
 - There are 39 people who are both O and Rh+
- And we can draw this out

Venn Diagram of \((O \cap Rh+)\)

- \(P(O \cap Rh+) = \)
- \(P(O \cap Rh+) = 39 \)

Example of Tossing a Die

- Event \(A \) [Toss an even number]
- Event \(B \) [Toss a number \(<= 3 \)]
- Can you calculate the probability of the complement, union and the intersection of these events?
 - What is \(A^C \)?
 - What is \(A \cup B \)?
 - What is \(A \cap B \)?

What is \(A^C \) for a Roll of a Die?

- \(A = [2, 4, 6] \)
- \(A^C = [1, 3, 5] \)
- the event \(A^C \) is tossing an odd number
- The probability of this event is \(\frac{3}{6} \) or \(\frac{1}{2} \)
 - \(P(A^C) = P(1) + P(3) + P(5) = \frac{3}{6} = \frac{1}{2} \)
- Alternative approach to find \(P(A^C) \):
 - \(P(A^C) = 1 - P(A) = 1 - \{P(2) + P(4) + P(6)\} \)
 - \(P(A^C) = 1 - \frac{3}{6} = 1 - \frac{1}{2} = \frac{1}{2} \)
What is \(A \cup B \) for a Roll of a Die?

- \(A = \{2, 4, 6\} \)
- \(B = \{1, 2, 3\} \)

\[A \cup B = [2, 4, 6] + [1, 2, 3] = [1, 2, 3, 4, 6] \]

Note that the sample point 2 is common to both events and we don’t count it twice.

Another Way to Solve This

- Find the probability of the complement, and subtract from 1
 - \(P(A \cup B) = 1 - P(A^c) \)
 - \(P(A^c) \) would mean everything that wasn’t in events A or B
 - In this case it is the value of 5
 - And the probability of rolling a five is 1/6
 - \(P(A \cup B) = 1 - 1/6 = 5/6 \)

The probability of this event is 5/6

\[P(AB) = P(1) + P(2) + P(3) + P(4) + P(6) = 5/6 \]

What is \((A \cap B) \) for a Roll of a Die?

- \(A = \{2, 4, 6\} \)
- \(B = \{1, 2, 3\} \)

\[(A \cap B) = [2] \] This is the sample point(s) that are common the A and B

Additive Rule of Probability (General)

- \(P(A \cup B) \)
- \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)

This is called the General Additive Rule of Probability

Let’s see how this applied to the Blood example

- Find the Union of O and Rh+ (i.e., probability of type O or Rh+)
- \(P(O \cup Rh+) = P(O) + P(Rh+) - P(O \cap Rh+) \)
- \(P(O \cup Rh+) = .45 + .86 - .39 = .92 \)

Additive Rule of Probability (in the case of events that are mutual exclusive)

- If events A and B are mutually exclusive, meaning no intersection, then
- Then, \(P(A \cup B) = P(A) + P(B) \)

- Two events are mutually exclusive if when one event occurs in an experiment, the other cannot occur

- Example: Events A and \(A^c \) are mutual exclusive.
- So, \(P(A \cup A^c) = P(A) + P(A^c) \)
Solve these with the Blood Type Data

- $P(A \cup O) = \frac{40}{100} = 0.4$
- $P(A^c) = 1 - P(A) = 1 - 0.4 = 0.6$
- $P(AB \cap Rh+) = \frac{4}{100} = 0.04$

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Rh+</th>
<th>Rh-</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td>39</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>Totals</td>
<td>86</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Solve these with the Blood Type Data

- $P(A \cup O) = P(A \text{ or } O) = P(A) + P(O) = 0.4 + 0.45 = 0.85$
- $P(A^c) = P(\text{not } A) = 1 - P(A) = 1 - 0.4 = 0.6$
- $P(AB \cap Rh+) = \frac{4}{100} = 0.04$

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Rh+</th>
<th>Rh-</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td>39</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>Totals</td>
<td>86</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Are you ready for some more probability rules???

Conditional Probability

- If we have knowledge that affects the outcome of an experiment, the probabilities will be altered
- We call this a Conditional Probability
- Designated as $P(A|B)$
- The probability of Event A is conditioned on the probability of Event B
 - In essence, we change the sample space to Event B
 - This changes the probabilities relative to Event B
- We often use the term "given" when talking about conditional probabilities
 - Given you are registered as a Republican, what is the probability that you support a Democrat candidate
 - Given you are overweight, what is the probability that you have high blood pressure
Conditional Probability

- Suppose we have the roll of a die as our total Sample space
 - S[1, 2, 3, 4, 5, 6]
- Let Event B be rolling an even number
 - B[2, 4, 6]
 - P(B) = P(even number) = P[2, 4, 6] = 3/6 = .5
- Let Event C be a rolling a number less than or equal to 3
 - C[1, 2, 3]
 - P(C) = P(≤ 3) = P[1, 2, 3] = 3/6 = .5
- What if we ask the probability of an even number given the die is less than or equal to 3?
 - P(B|C) = P(even|≤ 3) = P[2|≤ 3] = 1/3
 - Note: it is a 2 out the new or given possible space [1, 2, 3]

Conditional Probability

- The formula of a conditional probability is:
 - \[P(A | B) = \frac{P(A \cap B)}{P(B)} \]
 - Probability of the intersection of A and B divided by the probability of B
 - It adjusts the probability of the intersection to the reduced sample space of the condition
- Back to the die example: P(B|C)
 - If B = [even number on a die]
 - C = [less than or equal to 3]
 - P(B ∩ C) = P(2) = 1/6 = .1667
 - P(B) = P(1) + P(2) + P(3) = 3/6 = .5
 - P(B|C) = .1667/.5 = .333

Multiplicative Rule

- The Multiplicative Rule shows us the probability of an intersection between two events
- Remember we said a Conditional Probability is determined by the formula
- If we rearrange terms and we can find the formula for the probability of an intersection between A and B
- It shows that the probability of an intersection between two events depends upon the conditional probability between the two events
- This is called the Multiplication Rule of Probability

Special Case of Multiplication Rule if Events are Independent

- In the case of Independence between events A and B
 - Independence means that the Probability of Event A does not depend upon the Probability of B
 - P(A|B) = P(A)
 - With Independence, the formula for probability of an intersection reduces to:
 - P(A ∩ B) = P(A) * P(B)
 - If we can assume independence between events, figuring the probability of the intersection of events becomes much easier
Multiplication Rule applied to Two flips of a Coin

- **Experiment**: Flip a coin twice, note the face each time

<table>
<thead>
<tr>
<th>First Flip</th>
<th>Second Flip</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>TH</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Use Multiplicative Rule in cases where we can assume Independence

- Instead of laying out all the sample points and using the logic that each outcome is equally probable
- We can use the Multiplicative Rule assuming Independence
- We know the first flip is independent to the second flip
- The probability of observing a head in a single flip of a coin is \(\frac{1}{2}\) or .5
- If I can assume independence
 - \(P(\text{two Heads}) = \)
 - \(= P(\text{Head 1st flip}) \times P(\text{Head on the 2nd flip})\)
 - \(= (.5) (.5) = .25\)

Conditional Probability versus Independence

- **Conditional Probability** and **Independence** are very important concepts in research
 - If we hypothesize that salary levels differ between men and women, in essence we are saying, “given you are a female, I expect your salary is different.”
 - If we hypothesize that level of response is different between a drug and the treatment group, we are saying, “given you received the drug, your response is higher”
 - We often test conditional probability by comparing the data we observe to a hypothetical model of independence
 - You will see this in future lectures on probabilities using tables

Look at the Probability Formulas

- **Probability of a Union**
 \[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

- **Conditional Probability**
 \[P(A | B) = \frac{P(A \cap B)}{P(B)} \]

- **Probability of an Intersection**
 \[P(A \cap B) = P(B)P(A | B) \]

They end up feeling a little circular - you need to know about one to get the other
Summary

- We covered the notion of Complementary Events
- And Compound Event
 - Unions
 - Intersections
- And then Conditional Probabilities
- And the general Rules of Probabilities
 - Additive Rule
 - Conditional Probability
 - Multiplicative Rule
- Think of the rules as tools that *sometimes* are useful